

Sketch Me That Shoe

Heechan Shin

CS688 Student paper presentation

"Sketch Me That Shoe" (CVPR 16)

Contents

- Problems
- Solution
 - Dataset
 - Methodology
- Experiment

Announcement

• Most of contents of this presentation comes from materials of author's CVPR presentation.

• Sketch Based Image Retrieval (SBIR)

• SBIR

- Pros
 - No need for complicated description
 - No need for photos
- Cons
 - Sketch is highly abstract
 - Heterogeneous domains (sketch \leftrightarrow image)

- Previous works
 - Eitz, Mathias, et al. "An evaluation of descriptors for large-scale image retrieval from sketched feature lines." Computers & Graphics, 2010
 - Eitz, Mathias, et al. "Sketch-based image retrieval: Benchmark and bag-of-features descriptors." TVCG, 2011
 - Hu, Rui, et al. "Gradient field descriptor for sketch based retrieval and localization." ICIP, 2010

Category-level SBIR

Instance-level SBIR

This work wants to find **fine-grained instance-level** SBIR

- Sketch Based Image Retrieval (SBIR)
 - Sketch
 - Edge maps (automatically generated)

• Professional drawings (skilled artist)

• Free-hand sketches (amateur)

Cons of SBIR

- Reasons of challenging
 - Sketch is highly abstract
 - Heterogeneous domains (sketch \leftrightarrow image)
 - Want to capture the **fine-grained** similarities with free-hand sketches
 - No large-scale dataset exists

- Contributions
 - Constructing fine-grained SBIR dataset
 - Pre-training with sketch-specific data augmentation

- Constructing fine-grained SBIR dataset
 - 1. Data collection
 - 1) Collecting photo images
 - 419 shoe images from UT-Zap50K, 297 chairs from IKEA, Amazon and Taobao
 - 2) Collecting sketches
 - Recruiting 22 volunteers

- Constructing fine-grained SBIR dataset
 - 2. Data annotation
 - 1) Attribute annotation
 - 2) Generating candidate photos for each sketch
 - 3) Triplet annotation

- Learn a feature space using triplet loss
 - Always, $D\big(f_\theta(s),f_\theta(p^+)\big) < D\big(f_\theta(s),f_\theta(p^-)\big)$
 - Loss function :

$$L_{\theta}(s, p^+, p^-) = \max\left(0, \Delta + D\left(f_{\theta}(s), f_{\theta}(p^+)\right) - D\left(f_{\theta}(s), f_{\theta}(p^-)\right)\right)$$

Where, $D(\cdot)$ is euclidean distance, $f_{\theta}(\cdot)$ is feature embedding function

• Using three identical Sketch-a-Net* CNNs with Siamese network approach

* Q. Yu, et. al., "Sketch-a-net that beats humans" BMVC, 2015

• Re-train each Sketch-a-Net with

Stage 2 Training Sketch-Photo Ranking Stage 1 Training a Better Sketch-a-Net Pre-training Pre-training Fine-tuning Fine-tuning ImageNet-1K **TU-Berlin Sketch** ImageNet-1K Fine-grained & TU-Berlin SBIR Dataset Dataset Dataset 20000 36 Data augmentation

- Data augmentation
 - Stroke removal
 - Broad outline is important
 - Longer line is important
 - Sketch is drawn from outside

- Stroke deformation
 - Using Moving Least Square algorithm

• Data augmentation

Experiment

- Settings
 - Data
 - 419 shoes (304 for training + 115 for testing)
 - 297 chairs (200 for training + 97 for testing)
 - Implementation setting
 - Caffe
 - 32 CPU with 2 Nvidia Tesla K80
 - Learning rate : 0.001
 - Batch size : 128
 - During training, randomly crop 225×225 sub-images and flip them with 0.5 probability

Triplet-ranking prediction

Experiment

			¥
Shoe Dataset	acc.@1	acc.@10	%corr.
BoW-HOG + rankSVM	17.39%	67.83%	62.82%
Dense-HOG + rankSVM	24.35%	65.22%	67.21%
ISN Deep + rankSVM	20.00%	62.61%	62.55%
3DS Deep + rankSVM	5.22%	21.74%	55.59%
Our model	39.13 %	87.83 %	69.49 %
Chair Dataset	acc.@1	acc.@10	%corr.
BoW-HOG + rankSVM	28.87%	67.01%	61.56%
Dense-HOG + rankSVM	52.57%	93.81%	68.96%
ISN Deep + rankSVM	47.42%	82.47%	66.62%
3DS Deep + rankSVM	6.19%	26.80%	51.94%
Our model	69.07 %	97.94 %	72.30 %

Experiment

Accuracy@10

Experiment

30ms per one retrieval

https://sketchx.eecs.qmul.ac.uk

Thank you

• Quiz

1. Which is the target of this work?

- 1 Category level SBIR
- 2 Instance level SBIR
- ③ Siamese level SBIR
- 2. In the data augmentation section, what did they do?
 - ① Region removal & region deformation
 - ② Stroke removal & stroke deformation
 - ③ Context removal & context deformation